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LETTER TO THE EDITOR 

Bloch-like states in a ID Fibonacci chain 

G Ananthakrishna 
Materials Science Division, Indira Gandhi Centre for Atomic Research, 
Kalpakkam 603 102, Tamilnadu, India 

Received 13 September 1989, in final form 16 November 1989 

Abstract. Certain types of wavefunctions with quasiperiodic amplitudes, which arise when 
blocks of two kinds of atoms are repeated in a Fibonacci sequence, are shown to have the 
same signature as the Bloch wavefunctions in terms of generalised dimensions. 

The one-dimensional ( ID)  tight-binding model on a Fibonacci chain has been studied 
extensively as a model I D  quasicrystal [l]. Most attention has been paid to the study of 
the spectral properties [2, 31. Much less attention has been paid to the study of the 
wavefunctions of the model [4, 51. However, it is known that the wavefunctions are 
critical, corresponding to the singular continuous nature of the spectrum, although no 
rigorous proof exists [6]. In contrast, the Bloch states correspond to the absolutely 
continuous spectrum. Recently we discovered the existence of some wavefunctions at 
specific energies which behave much like the extended wavefunctions when blocks of 
atoms were repeated quasiperiodically [7]. Such wavefunctions have been seen in other 
systems [8]. The amplitude of these wavefunctions, though quasiperiodic, nearly repeats 
and hence the wavefunctions have the appearance of extended states. Recent studies of 
the wavefunctions show that there are two types of wavefunctions [4,5], namely the self- 
similar wavefunctions at the band edges having a multifractal[9] nature and the chaotic 
wavefunctions which exhibit no particular scaling properties. Since other wavefunctions 
for this system are critical (mostly chaotic, corresponding to the chaotic but bounded 
trajectories of the trace map [lo]>, we should expect a crossover from the extended to 
the chaotic states. We have studied this crossover behaviour (41 using multifractal 
analysis. While characterising these wavefunctions we found [4] that even for a very 
large system size (- lOOO0Oj  these wavefunctions show an apparent multifractal nature, 
while the conventional Bloch states should have all the generalised dimensions D(q)  = 
1 for all q.  Thus it is necessary to prove that these states have the same type of signature 
as the Bloch wavefunctions. 

Consider the tight-binding Hamiltonian defined on a Fibonacci lattice by 

Here the site energies E ,  = E* or eB appear in the Fibonacci sequence. For the sake of 
simplicity we choose the hopping integrals tn,n+l = t. We have recently shown [7] that 
when blocks of atoms A and B of sizes N (>1) and M ( > l j ,  respectively, are repeated 
in a Fibonacci sequence then there exist some energies E,, for which the wavefunctions 
behave like extended states. These energies are solutions of the matrix equation 
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TZ = t l  or Tf: = + - I .  Here TA and TB are the transfer matrices corresponding to 
the sites A and B,  and I is the unit matrix. The maximum number of such states is 
N + M - 2. At  these energies the invariant I of the trace map [ l ]  

I = x; + x:-I + x:-z - 2x ,x r - ,x , -2  - 1 

vanishes. Here X ,  = (Tr Mr)/2 is the trace of the transfer matrix M, of r Fibonacci blocks 
of atoms. For the sake of concreteness, we consider the case when N = M = 2. For this 
case, E,, = t w / 2 ,  where w = - E *  = E ~ .  For E = w/2 ,  we have 

The wavefunction at a sites = 2p + 2k with 2p A sites and 2k B sites is given by 

where S diagonalises TA. Choosing w = 2ltl cos 8, we see that whenp is an integer and 
2n/8 = p ,  q ! ~ ~ * ~  = q,, for p A sites and hence the wavefunction is periodic in p and 
therefore quasiperiodic in s. For other irrational values ofp ,  yl, # q,*p for anyp. Yet 
the envelope of the wavefunction looksvery much like an extended state [4,7]. Choosing 
W O  = = 1, we obtain from (3) 

w r  = [sin(4p + 1)0/2]/(sin 8/2) even A sites (4a) 

qs-l = -[sin(4p - 1)8/2]/(sin 0 /2 )  odd A sites. (4b) 

At this point it is worthwhile commenting on the usefulness of the method of finding 
the extended states in any quasiperiodic system. Consider the example A-, ABBB, 
B-, A [8]. This substitution rule satisfies the sequence S,= S,-1S;I-2 with the transfer 
matrices obeying the recursion relation T,, = T;-,T,- I .  The numbers of A atoms and B 
atoms are in the ratio (1 + v/13)/6 and we note that the B atoms always appear in threes. 
Thus we can find the energies E,, by demanding T i  = -Cl. This gives E - E~ = Lt  with 

t t)/tl < 2. For all these allowed values of the parameters we get two extended 
states. A plot of one such wavefunction for eR = = -0.49 and with E,, = 0.51 is 
shown in figure 1.An alternative way of locating the extended states is to calculate the 
energies at which the invariant I of the trace map vanishes. However, it is often not 
possible to calculate I for all types of quasiperiodic sequences. Where it is possible, 
obtaining solutions of I ( € )  = 0 is not easy when blocks of atoms are large. Thus the 
method presented here is simple and straightforward. 

Using multifractal analysis we show that these wavefunctions have the same signature 
as the extended states. Below we briefly recapitulate the multifractal method and 
study the scaling behaviour of the wavefunction given by (4). We first normalise the 
wavefunction in the given interval and then choose the probability measure P, to be l ~ + ~ l ~  
with a uniform Lebesgue measure 1 = l/F,. The scaling of the probability measure is 
taken as Pi - l", where a has a spectrum of singularities given by f ( a )  for a multi- 
fractal wavefunction. Specifying f ( a )  completely characterises the wavefunction. For 
the Bloch wavefunctions f ( a )  = a = 1. These quantities are calculated by computing 
x(q) = Ell';, which scales as l T ( q ) .  Then z ( q )  is related tof (a )  through 

- 

t ( 4 )  = D(q) (q  - 1) a q 3 q  = a t = aq - f ( a )  ( 5 )  

where the D ( q )  are the generalised dimensions. 
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In order to calculate the normalised wavefunctions, it is necessary to consider the 
nature of the quasiperiodic sub-sequences of the A and B atoms which had been discussed 
in the context of diffusion on a Fibonacci chain [ll]. We note that there are three types 
of sites namely a,  /3 and y appearing in the sequence Pya/3y/3ya$ya/3y . . . with 
a frequency of occurrence oP1 : 1 : 1, where o = (G + 1) /2  is the golden mean. The 
sites (Y, /3 and y occur between L and L ,  L and S, and S and L. The A blocks occupy the 
(Y and y sites, and the B blocks occupy the /3 sites. Furthermore, the /3 sites always 
precede the y sites and thus IVI at the p sites have the same value as at the odd y sites. 
Therefore, it is sufficient to consider the sum over the (Y and the y sites for evaluating 
the normalisation constant. Le t s  = 2Fr+,; then there are 2Fr-, A atoms at the (Y sites, 
2Fr- , A atoms at the y sites and 2Fr- B atoms at the p sites. Thus we have 

A E IWS(k7 4)12 = A  (E I V s ( k ~ ) 2 1  + 2 l V , ( k ~ ) ~ ~  + 2 2 lV. (k ,p) l?)  = 1. (6) 
P PY Pa P y(odd) 

The last term represents the sum corresponding to the /3 sites due to the fact that IVI at 
the /3 has the same value as at the odd y sites. These sums can be performed by using the 
projection technique [2 ,3] .  Although three different sites are involved, we are interested 
in calculating the sum over the A sites and hence it is adequate to use slits corresponding 
to the a-y sub-sequence. Consider evaluating the first term (apart from a factor of 
sin2 13/2). This can be written as 

F r -  1 

py(even) 
2 ( 2  - exp[-i(4p + q e ]  - exp[i(4p + 1)131). (7) 

In the limit of large r ,  the last two terms can be obtained by the projection method along 
the lines given in [ 2 , 3 ] .  For instance we get 

E exp(+i4pe) = E [exp(iqnm) (sin qnm) 6(4e +- ~ n m ) I / ~ q n m *  (8) 
P ,(even) n ,m 

Here qnm = n(n - m)/w and K,, = 2 n ( n  + n o ) / ( N  + Mo) is the wavevector for the 
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Fibonacci lattice (N = M = 2). In the limit of large r it is clear that the 6 function does 
not contribute since both 19 and K, ,  are in general two different irrational numbers. Thus 
the first term gives the dominant contribution equal to 2F,- It is easy to show that the 
odd terms have an equal contribution. In a similar way, the contribution from the odd 
and even n sites can be shown to be 4F,-,. An equal contribution arises for the /3 sites. 
Thus one gets 

Thus the normalised wavefunctions Y in the large r limit are 

W , ( k  p )  = W 4 p  + W/F,+ 1 (loa) 

Y , - , ( k , p )  = -sin(4p - l)O/Fr+l odd A sites. (106) 

even A sites 

Following the above lines we can calculate x (q )  by again splitting the sum into three 
parts as above. Consider one such sum. It is easy to see that the leading term is 

(2 - exp[-i(4p + i)e] - exp[i(4p + i)e]p - 2 9 ~ , . - , .  
P y 

An equal contribution arises from the /3 sites. The sum corresponding to nsites is 2qF,-,. 
(In addition, there is a term arising from equal powers of the exponentials in the 
expansion which only changes the contribution up to a multiplicative factor and is 
therefore unimportant.) Thus, x (q )  = [2F,+1]'-q and hence we find 

z ( q )  - 4 - 1 f (a)  = a = 1. (11) 
This is what is expected for a conventional extended wavefunction. When Nand M are 
greater than two, it is possible to perform a similar calculation, though much more 
tedious. In such an instance one needs to obtain the Nand M wavefunctions within the 
A block and the B block by supplying an appropriate number of transfer matrices of A 
or B. When the sizes of these blocks are large, it is clear that the number of such states 
grows linearly with the sizes of the blocks and in this limit within each block the profile 
of the wavefunction would be like that of a periodic system. A few comments may be in 
order on the slow numerical convergence z ( q )  as a function of the size of the system. 
Let xr(q) and z,(q) represent the values ofx(q) and z corresponding to a Fibonacci chain 
length F,. Then 

x r ( q )  - l T r ( q )  - F;Tr'(4) - w-",(4). 

z,(q) + 1 as r +  x ;  thus z,(q) - 1/r and hence the slow convergence. 
The effect of the finite size of the system, the slow convergence and the scaling law 

are well illustrated by considering a plot of t r ( q )  as a function of q for various lengths of 
the chain (calculated numerically by using 1 = F;'). Figure 2 contains a plot of t r (q )  for 
r = 19 to 23 and the extrapolated z,(q) which is linear in q. The inset contains the scaling 
of t r ( q )  as a function of r ,  for q = 10. A few comments may be in order. First, it must be 
pointed out that the limiting behaviour z,(q) cc q - 1 can be obtained in the following 
way. Let the chain of length 2F, be divided into m segments of length 1. Define 

kl m 

When I is chosen to be of the order of a few blocks one finds t ( q )  q - 1. The extent 
of 1 represents the length over which the wavefunction exhibits a correlation below which 
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Figure 2. Plot of numerically calculated s,(q) versus r for r = 19 to 23 and the extrapolated 
~ ~ ( 9 ) .  Inset: ~ , ( q )  scaling as r-I ,  for 9 = 10. 

one finds a change in the curvature of t ( q )  against q. Second, in the case of the Thue- 
Morse sequence one may be led to think that convergence is non-monotonic, but one 
finds in reality several independent sequences which converge to the same limiting value. 
In this case the convergence is more rapid. For instance for r = 14, S, = 75316, the 
change in curvature is hardly noticeable. 

In conclusion we have demonstrated that the quasiperiodic wavefunctions cor- 
responding to certain energies E,, have the same signature as conventional Bloch states. 
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International Atomic Energy Agency and Unesco for hospitality at the International 
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